Roll No.

Total No. of Pages : 02

Total No. of Questions : 07

M.Sc. (Mathematics) (Sem.-2) NUMERICAL ANALYSIS Subject Code : MSM-205-18 M.Code : 75966 Date of Examination : 21-12-22

Time: 3 Hrs.

Max. Marks : 70

INSTRUCTIONS TO CANDIDATES :

- 1. SECTION-A is COMPULSORY consisting of FIVE questions carrying TWO marks each.
- 2. SECTION B & C. have THREE questions each.
- 3. Attempt any FOUR questions from SECTION B & C carrying FIFTEEN marks each.
- 4. Select atleast TWO questions from SECTION B & C each.

SECTION-A

- l. Write short notes on :
 - a) If $u = \frac{5xy^2}{z^3}$ and errors in *x*, *y* and *z* be 0.001. Compute the relative maximum error in *u* when x = y = z = 1.
 - b) Find the iterative formula to solve $x = e^{-x}$ using Newton Raphson Method.
 - c) Using newton divided difference formula, find the unique polynomial P(x) of degree 2 or less such that

$$P(1) = 1, P(3) = 27, P(4) = 64$$

- d) What is the difference between Gauss-Seidal and Jacobi's method?
- e) Write the formula of Runge-Kutta method of order 3.

SECTION-B

2. Compare a real root of the equation

 $f(x) = 3x + \sin(x) - e^x = 0$, $x_0 = 0$, $x_1 = 1$ using Regula-Falsi method.

- 3. Describe the convergence of Lin-Bairstow's method.
- 4. Consider the tri-diagonal matrix

$$\mathbf{A} = \begin{pmatrix} 4 & 2 & 0 \\ 2 & 2 & 1 \\ 0 & 1 & 1 \end{pmatrix}.$$

To find eigenvalues one uses successive iterations of Givens rotations. Apply two complete iteration of Given's method to calculate the eigen values.

SECTION-C

5. Using the Adams-Bashforth predictor-corrector equations, evaluate y (1.4), if y satisfies the following equation.

$$\frac{dy}{dx} + \frac{y}{x} = \frac{1}{x^2}$$

And y(1) = 1, y(1.1) = 0.996, y(1.2) = 0.986, y(1.3) = 0.972

6. Find the solution at x = 12.2 using Stirling's formula.

x	10	11	12	13	14
f(x)	0.23967	0.2806	0.31788	0.35209	0.38368

7. Using the Runge-Kutta formula of fourth order, find the numerical solution at x = 0.8 for

$$\frac{dy}{dx} = x + y$$
, $y(0.4) = 0.41$

Assume the step length h = 0.2.

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.