

Total No. of Pages : 02

Total No. of Questions : 08

M.Tech. (Power System) (Sem.–1) POWER SYSTEM DYNAMICS-I Subject Code : MTPS-102-18 M.Code : 75775 Date of Examination : 19-01-2023

Time : 3 Hrs.

Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. Attempt any FIVE questions out of EIGHT questions.

- 2. Each question carries TWELVE marks.
 - 1. a) Explain advantages of per unit system of parameter measurement.
 - b) Prove that power remains unaltered when three phase system quantities are transformed to two-phase equivalent quantities.
 - 2. Explain the transformation of quantities from rotating axes $(\alpha, \beta, 0)$ to stationary axes (d, q, 0)
 - 3. A 555 MVA, 24kV. 0.9 p.f. 60Hz, 3-phase 2 pole synchronous generator has the following inductances and resistances associated with the stator and field windings:

laa	(mH)	<i>lab</i> (mH)	l _{afd} (mH)	$L_{ffd}(mH)$	$R_a(\Omega)$	$R_{fd}(\Omega)$
3.2758+0.	$0458\cos(2\theta)$	-1.6379-0.0458cos	$40.0\cos(2\theta)$	576.92	0.0031	0.0715
		$(2\theta + (\pi/3))$				

- a) Determine L_q in henrys.
- b) If the stator leakage inductance L_1 ; is 0.04129 mH, determine L_{aq} in henrys.
- c) Using the, machine rated values as base values for the stator quantities, determine the per unit values of the L_{aq} following in the L_{ad} -base reciprocal per unit system.
- 4. a) Write state-space model of synchronous generator using d-q axis theory.
 - b) Explain connection matrix [C] used in Park's transformation.

- 5. a) What do you mean by small signal analysis of power system.
 - b) Explain the concept of power system stability using eigen value analysis.
- 6. Draw and explain block diagram for Power system stabilizer model of SMIB power system.
- 7. A 3- Φ , 50 MY A, 33KV, 50 Hz, hydro generator has the following reactances in p.u. on the generator rating as the base: $X_d = 2.0$; $X_d = 0.4$; $X_{d''} = 0.25$; $T'_{d0} = 5.00$ sec. This generator supplies rated KVA to an infinite bus at rated terminal voltage and unity power factor. Determine the load angle and transient power.
- 8. a) Derive the Induction Motor Model in matrix form based on two-axis theory.
 - b) Explain the prime mover output control methods employed.

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.