Roll No.

Total No. of Pages: 02

Total No. of Questions: 08

M.Tech. (Microelectronics) (Sem.-1)

ADVANCED MATHEMATICS FOR ENGINEERS

Subject Code: ME-807 M.Code: 38407

Time: 3 Hrs. Max. Marks: 100

INSTRUCTIONS TO CANDIDATES:

1. Attempt any FIVE questions out of EIGHT questions.

2. Each question carries TWENTY marks.

SECTION-A

1. a) Find the Fourier transform of $f(x) = e^{-at^2}$ for a > 0.

b) Find
$$f(t)$$
, if $F_s(s) = \frac{s}{1+s^2}$.

2. a) Find Z-transform of $s[n] = u[n] \cos wn$, where u[n] is unit step function.

b) Find inverse Z-transform of $\frac{z^3}{z^2-1}$.

3. Starting with (0, 0, 0) and using Jacobi method find the next five iteration for the system:

$$5x - y + z = 10$$
, $2x + 8y - z = 11$, $-x + y + 4z = 3$.

4. a) Find the extremal of the functional I [y (x)] = $\int_0^{\log 2} (e^{-x}y'^2 - e^xy^2) dx$.

b) State and prove Brachistochrone problem

a) Find bilinear transformation whose fixed points are -1 and 1.

b) Find image of
$$0 \le |z| \le 2$$
 under the mapping $w = \frac{z}{z-1}$

6. a) State and prove Time shifting property of Z transform.

b) State and prove Convolution theorem for Fourier transforms.

- 7. a) Using convolution theorem find inverse Z-transform of $\left(\frac{z}{z-a}\right)^3$.
 - b) Determine z-transform of $Z(e^{-an} \sin(n))$
- 8. a) Solve the equation using Gauss-elimination method

$$10x - 2y - 3z - u = 3,$$

$$-2x + 10y - z - u = 15,$$

$$-x - y + 10 z - 2u = 27$$

$$-x - y - 2z + 10u = -9$$

b) Find largest eigen values and the corresponding eigen vector of the matrices

$$A = \begin{bmatrix} -2 & 0 & -1 \\ 1 & -1 & 1 \\ 2 & 2 & 0 \end{bmatrix}$$

NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.