Roll No. Total No. of Pages: 02

Total No. of Questions: 09

M.Sc. (Physics) (Sem.-2)
QUANTUM MECHANICS-II
Subject Code: MSPH-423-21

M.Code: 91904

Date of Examination: 16-12-22

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

1. Write briefly:

- a) Discuss the importance of Dirac equation.
- b) Signify the importance of negative energy solutions.
- c) What is non-relativistic limit of Dirac equation?
- d) What is the spin magnetic moment of electron?
- e) What is Lamb shift?
- f) Discuss the quantization of complex scalar field in QFT.
- g) What do you understand by Hamiltonian formalism of scalar field?
- h) What are Feynman rules?
- i) Write first order QED matrix elements.
- j) Define scattering cross section.

1 M-91904 (S2)-568

SECTION-B

- 2. What is the importance of Klein-Gordon equation?
- 3. What do you understand by spin-orbit interaction?
- 4. State and prove Noether theorem. Discuss its importance.
- 5. Explain in detail the covariant perturbation theory.
- 6. Evaluate the second order QED matrix elements.

SECTION-C

- 7. Formulate Dirac equation and discuss the plane wave solution.
- 8. a) Explain Lagrangian formalism of classical field.
 - b) Discuss Feynman rules and diagrams and explain one example.
- 9. a) Obtain expression for scattering cross-sections and decay rates.
 - b) Discuss in detail spin angular momentum of the dirac particle.

NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

2 M-91904 (S2)-568