Roll No.

Total No. of Pages : 02

Total No. of Questions : 07

M.Sc. Mathematics (Sem.-2) ALGEBRA-II Subject Code : MSM-201-18 M.Code : 75962 Date of Examination : 12-12-22

Time: 3 Hrs.

Max. Marks : 70

INSTRUCTIONS TO CANDIDATES :

- 1. SECTION-A is COMPULSORY consisting of FIVE questions carrying TWO marks each.
- 2. SECTION B & C have THREE questions each.
- 3. Attempt any FOUR questions from SECTION B & C carrying FIFTEEN marks each.
- 4. Select atleast TWO questions from SECTION B & C each.

SECTION-A

1. Attempt the following :

- a) Let R and S be two isomorphic rings. Show that R[x] and S[x] are also isomorphic.
- b) Show that 2x + 1 is a unit in $\mathbb{Z}_4[x]$.
- c) Prove that the polynomial $f(x) = x^2 2x 15$ is reducible over \mathbb{Z} .
- d) Show that every field extension of prime degree is simple.
- e) If a field F has q elements, then F is a splitting field of $x^q x$ over its prime subfield.

SECTION-B

- 2. a) An integral domain R with unity is a *UFD* if and only if every non-zero, non-unit element is finite product of primes. (7)
 - b) Show that every ideal in F[x], where F is a field, is a principal ideal. (without using the fact that F[x] being a Euclidean domain is a PID.) (8)

- 3. a) Show that $x^4 + 1$ is not irreducible over \mathbb{Z}_p for any prime *p*. (7)
 - b) Let F be a field and $p(x), f(x), g(x) \in F(x)$, where p(x) is irreducible over F. Show that if p(x) | f(x) g(x), then either $p(x) | f(x) \operatorname{or} p(x) | g(x)$. (8)
- 4. a) If *L* is an algebraic extension of *K* and *K* is an algebraic extention of *F*, then *L* is an algebraic extension of *F*. (7)
 - b) Prove that the ring \mathbb{Z} of integers is a principal ideal domain. (8)

SECTION-C

5.	a)	Find the splitting field of $x^5 - 3x^3 + x^2 - 3$ over \mathbb{Q} . Also find the degree and the basis		
		of it over \mathbb{Q} .	(7)	
	b)	Prove that every algebraic extension of a finite field is a separable extension.	(8)	
6.	a)	Find the Galois field of 9 elements.	(7)	
	b)	If F is a finite field and $m \in \mathbb{N}$, then there exist a field extension K of F such	h that	
		[K:F] = m.	(8)	

- 7. a) Find the fixed field under A ut (K), where $K = \mathbb{Z}_2$. (7)
 - b) Prove that any field extension K of F of degree two is a normal extension of F. (8)

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.