Roll No.						

Total No. of Pages : 02

Total No. of Questions : 11

M.Sc. (Chemistry) (2018 Batch) (Sem.-2) PHYSICAL CHEMISTRY - II Subject Code : CHL-413-18 M.Code : 75983 Date of Examination : 16-12-22

Time: 3 Hrs.

Max. Marks : 70

INSTRUCTIONS TO CANDIDATES :

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains EIGHT questions carrying FIVE marks each and students have to attempt any SIX questions.
- 3. SECTION-C will comprise of two compulsory questions with internal choice in both these questions. Each question carries TEN marks.

SECTION-A

1. Answer briefly :

a) Which of the following wave functions are acceptable in quantum mechanics

 $\Psi = \sin x, \Psi = \tan x, \Psi = \operatorname{cosec} x, \Psi = \cos x + \sin x, 0 < x < 2\pi.$

- b) Determine whether the following operator is linear or nonlinear : SQRT (where, SQRT = square root).
- c) Show that e^{ax} is an eigen function of the operator d^n/dx^n . What is the eigen value?
- d) Calculate the magnitude of the orbital angular momentum for H-atom for l = 2.
- e) How many microstates are possible for p^3 configuration?
- f) Check the acceptability of the following function : $\sqrt{\frac{2}{a}} \sin \frac{n\pi x}{a}$ n the range (0 to a),
- g) How many microstates are possible for p^3 configuration?
- h) Write down time independent Schrodinger equation and explain all the terms.
- i) Calculate the number of radial node and angular node of 5d orbital.
- j) What is the complex conjugate of the wave function $(\psi 6i)$?

SECTION-B

- 2. Briefly describe the quantum mechanical postulates with proper explanation.
- 3. Write a short note on Russel-Saunders (R-S) coupling.
- 4. If two operators α and β are Hermitian, find out the condition that their product $\alpha\beta$ will also be Herpnitian.
- 5. Prove that position and momentum operator do not commute.
- 6. The energy of particle 3d box is $E = 25h^2/8mL^2$. How many degenerate states are prossible? Write down the degenerate states.
- 7. Write a short note on Hamiltonian operator.
- 8. Arrange the following states (term symbols) for p^2 configuration in the increasing order of energy: 3P and with proper explanation.
- 9. Calculate the degeneracies of a particle of mass m in a 3-D cubical box of width L having energies equal to 9 in units of $(h^2/8mL^2)$.

SECTION-C

10. Derive the Huckel MO theory for 1,3-butadiene. Draw simple schematics of the bonding and anti-bonding energy level diagrams.

OR

The wave function ψ of a certain system is a linear combination of following: $\psi = \sqrt{\frac{1}{4}} \psi_1 + \sqrt{\frac{3}{4}} \psi_4$, where ψ_1 and ψ_2 are the eigen functions with eigen value E_1 and E_2 . What is probability that the system energy will be observed to be E_1 ?

11. Briefly describe the perturbation theory.

OR

Write Schrodinger equation for motion of an electron in a Hydrogen like atom in spherical coordinates. Separate the equation into three functions $R(r)Y(\theta)Z(\phi)$ and solve.

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.