	Roll No.												
--	----------	--	--	--	--	--	--	--	--	--	--	--	--

Total No. of Pages : 03

Total No. of Questions : 11

M.Sc.(Physics) (2018 Batch) (Sem.–1) QUANTUM MECHANICS-I Subject Code : MSPH-413-18 M.Code : 75124 Date of Examination : 12-01-2023

Time: 3 Hrs.

Max. Marks : 70

INSTRUCTIONS TO CANDIDATES :

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains SEVEN questions carrying FIVE marks each and students have to attempt any SIX questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

1. Answer briefly :

- a) Differentiate between Hermitian operator and Anti-Hermitian operator.
- b) Show that the expectation values of anti-Hermitian operator are always imaginary;
- c) Distinguish between the Schrodinger picture and Heisenberg picture of a dynamical quantum system.
- d) Evaluate the commutator $[\hat{H}, \hat{a}^{\dagger}]$ where \hat{H} is the Hamiltonian operator and \hat{a}^{\dagger} is the creation operator.
- e) Show that $[\stackrel{\wedge}{L}_{+}, \stackrel{\wedge}{L}_{-}] = 2\hbar \stackrel{\wedge}{L}_{z}$.
- f) What do you understand by the stationary state approximate methods?
- g) What is optical theorem in scattering?

- h) Evaluate the commutator $[\stackrel{\wedge}{L_z}, \stackrel{\wedge}{r^2}]$,
- i) When you will prefer to use the perturbation theory as compared to variational method for solving quantum mechanics problem?
- j) What do you understand by the scattering amplitude and scattering length.

SECTION-B

- 2. a) Show that eigen values of a Hermitian operator are real.
 - b) Show that eigen vectors belonging to two different eigen values of a Hermitian operators are orthogonal.
- 3. Calculate the expectation value of momentum $(\stackrel{\wedge}{p_x})$ for the ground state wavefunction of a 1-D harmonic oscillator $\psi(x) = N \exp[-\beta x^2]$, where N is the normalization constant and β is a parameter.
- 4. Using matrix mechanics, show that the ground state of a linear harmonic oscillator has non-zero, real and positive energy.
- 5. Using the angular momentum algebra, discuss the orbital angular momentum theory and derive the relations

$$\stackrel{\wedge}{L_{\pm}} \mid l,m) = \hbar \sqrt{l(1+1) - m(m\pm 1)} \mid l, \ m \pm 1 \rangle$$

In above relation \hat{L}_{+} and \hat{L}_{-} and are the raising and lowering operators, respectively and $|l, m\rangle$ is the joint eigenstate of \hat{L}^{2} and \hat{L}_{z} operators.

- 6. Using the time-independent perturbation theory for the non-degenerate case, derive the expression for first order correction to energy and wavefunction.
- 7. Estimate the ground state energy of a 1-D harmonic oscillator using a trial wavefunction $\psi(x) = C \exp[-\alpha x]$,
- 8. Using the time dependent perturbation theory, derive the expression for transition probability in harmonic perturbation.

SECTION-C

- 9. What is difference between Schrodinger, Heisenberg and Interaction representation? Show that the time evolution of state in interaction picture is governed by the interaction term $\hat{V}_{l}(l)$.
- 10. What is 'degeneracy' in quantum mechanics? Explain how two fold 'degeneracy' can be resolved and how are the splitted energy components calculated?
- 11. What do you understand by the 'Born Approximation' in the scattering theory. Explain the first, second, and third terms in the Born Approximation with the help of diagrams. What is n^{th} order Born approximation.

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.