|--|

Total No. of Pages : 03

Total No. of Questions : 11

M.Sc.(Physics) (Sem.-1) CLASSICAL MECHANICS Subject Code : MSPH-412-18 M.Code : 75123 Date of Examination : 10-01-2023

Time: 3 Hrs.

Max. Marks : 70

INSTRUCTIONS TO CANDIDATES :

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains SEVEN questions carrying FIVE marks each and students have to attempt any SIX questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

- 1. Answer briefly :
 - a) Explain the terms: (i) Holonomic and (ii) Non-Holonomic constraints.
 - b) Define generalized coordinates and their advantages.
 - c) Write Lagrangian equations for a simple pendulum.
 - d) Explain the physical significance of Hamiltonian.
 - e) What is Δ -variation? How it is different from δ -variation?
 - f) Write a note on Infinitesimal Canonical transformation.
 - g) What is Jacobi's identity?
 - h) "Lagrangian mechanics is superior to Newtonian mechanics". Explain how?
 - i) Define action angle variable in one dimension.
 - j) How many generalized coordinates are needed to specify the motion of a rigid body?

1 M-75123

SECTION-B

- 2. State the D'Alembert Principle. Derive Lagrange's equation of motion from it for conservative system. How results will be modified for non-conservative system.
- 3. Obtain Hamiltonian and Hamilton's equation of motion for a compound pendulum from its Lagrangian. Deduce the Lagrange function and Lagrange equation of motion for a compound pendulum. Also calculate the period of oscillation.
- 4. State and prove the principle of least action. Deduce the principle of least action in the following form:

$$\Delta \int_{t1}^{t2} p_1 \phi_1 dt = 0$$

5. What is a Poisson bracket? If H is the Hamiltonian and F is a function, depending upon position, momenta and time, show that, where symbols have their usual meaning.

$$\frac{dF}{dt} = \frac{\partial F}{\partial t} + [F, H]q, p''$$

- 6. Show that the transformation $P = 1/2(p^2 + q^2)$ and $Q = \tan^{-1}(q/p)$ is canonical.
- 7. Show that the kinetic energy for a system of particles can be written as the sum of three homogeneous functions of the generalized velocities : $T = T_0 + T_1 + T_2$, where T_0 is independent of generalized velocities, T_1 is linear in velocities, and T_2 is quadratic in velocities.
- 8. Find the equations of motion of a pendulum bob suspended by a spring and allowed to swing in a vertical plane.

SECTION-C

- 9. Give an account of Hamilton Jacobi theory and illustrate it by applying it to the problem of simple harmonic oscillator.
- 10. Discuss Euler angles as the generalized coordinates for a rigid body motion and obtain an expression for the angular velocity of a rigid body in terms of Euler's angles.
- 11. A mass M_2 hangs at one end of the string which passes over the frictionless non-rotating pulley (see figure). At the end of this string there is a non-rotating pulley of mass M_1 over which there is a string carrying mass m_1 and m_2 . Setup the Lagrangian of the system and find the acceleration of mass M_2 .

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.