ROILNO.

Total No. of Pages : 02

Total No. of Questions : 09

M.Sc. (Mathematics) (Sem.-1) REAL ANALYSIS-I Subject Code : MSM-102-22 M.Code : 92797 Date of Examination : 17-01-23

Time: 3 Hrs.

Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION B & C. have FOUR questions each.
- 3. Attempt any FIVE questions from SECTION B & C carrying EIGHT marks each.
- 4. Select at least TWO questions from SECTION B & C.

SECTION-A

1. Write briefly :

- a) Give example of a countable set and an uncountable set.
- b) Define Pseudo metric space.
- c) Give an example of metric space.
- d) Define Compact set.
- e) Define convergence of a sequence in a metric space.
- f) Define complete metric space.
- g) Define continuous function in a metric space.
- h) Discuss different kinds of discontinuity.
- i) Define partition of a closed interval [a, b].
- j) Define upper and lower Riemann-Stieltjes integrals.

SECTION-B

- 2. a) Show that the set of rational numbers is countable.
 - b) Show that in a metric space, arbitrary union of open sets is open.
- 3. a) Show that in the usual metric space (R,d)
 - i) (2, 3) and (4, 5) are separated sets (ii) (2, 3) and (2, 5) are not separated sets,
 - b) Let d be a metric on ², describe open spheres of unit radius centered at O(0,0) when $x = (x_1, x_2) \in \mathbb{R}^2$ and $y = (y_1, y_2) \in \mathbb{R}^2$, d is given by

$$d(x, y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2} .$$

- 4. a) Show that limit of a sequence in a metric space, if it exists is unique.
 - b) Show that every convergent sequence in a metric space is a Cauchy sequence.
- 5. Suppose that $X_n \in \mathbb{R}^2$ (n = 1, 2, 3,...) and $X_n = (\alpha_{1n}, \alpha_{2n}, ..., \alpha_{kn})$. Then the sequence $\{X_n\}$ in \mathbb{R}^k converges to the point $X = ((\alpha_1, \alpha_2, ..., \alpha_k)$ in \mathbb{R}^k if and only if $\lim_{n \to \infty} \alpha_{jn} = \alpha_j$; $(1 \le j \le k)$.

SECTION-C

- 6. Let (X, d_1) and (Y, d_2) be two metric spaces and let $f : X \to Y$ be a mapping. Then f is continuous if and only if inverse image under f of every open subset of Y is an open subset of X.
- 7. Define uniform continuity in a metric space. Show that every uniform continuous function is continuous but converse of this need not be true.
- 8. Let $f : [a, b] \to \mathbb{R}$ be bounded and α : $[a, b] \to \mathbb{R}$ be a monotonically increasing, then for any partition P of [a, b], $m(\alpha(b) \alpha(a)) \le L(P, f, \alpha) \le U(P, f, \alpha) \le M(\alpha(b) \alpha(a))$ where *m* and M are g.l.b and l.u.b of *f* in [a, b].
- 9. If $f_1 \in \mathbb{R}(\alpha)$ and $f_2 \in \mathbb{R}(\alpha)$ on [a,b], then $f_1 + f_2 \in \mathbb{R}(\alpha)$ and

$$\int_{a}^{b} (f_1 + f_2) d\alpha = \int_{a}^{b} f_1 d\alpha + \int_{a}^{b} f_2 d\alpha$$

NOTE : Disclosure of Identity by writing Mobile No. or Marking of passing request on any paper of Answer Sheet will lead to UMC against the Student.