	1					
Roll No.						

Total No. of Pages : 02

Total No. of Questions : 07

M.Sc. (Mathematics) (Sem.-1) REAL ANALYSIS-I Subject Code : MSM-102-18 M.Code : 75130 Date of Examination : 10-01-2023

Time: 3 Hrs.

Max. Marks : 70

INSTRUCTIONS TO CANDIDATES :

- 1. SECTION-A is COMPULSORY consisting of FIVE questions carrying TWO marks each.
- 2. SECTION B & C have THREE questions each.
- 3. Attempt any FOUR questions from SECTION B & C carrying FIFTEEN marks each.
- 4. Select atleast TWO questions from SECTION B & C each.

SECTION-A

1. Solve the following:

- a) Define cantor set and shows that it is uncountable.
- b) Evaluate $\int_{0}^{3} x^{2} d([x]-x)$.
- c) Show that every infinite subset of a countable set is countable.
- d) Let (X, d) be a metric space. How many more metrices can we define on X? Explain.
- e) Define complete metric space.

SECTION-B

- 2. a) Prove that closed subset of a compact set is compact.
 - b) Let Y be subspace of a metric space (X, d). Then
 - $E \subseteq Y$ is open in $Y(=) E = G \cap Y$, G is open set in X.

- 3. a) Show that in real numbers intervals & only intervals are connected sets.
 - b) State & prove Max-Min theorem.
- 4. a) Prove that every Cauchy Sequence R^{K} is convergent.
 - b) Give an example to show that a continuous function defined on a non-compact domain doesn't attain its bounds.

SECTION-C

5. a) If $f \in R(\alpha)$ on [a, b] and $a \le c \le b$ then show that $f \in R(\alpha)$ on [a, b] & [c, b].

b) Check uniform convergence of series $\sum_{n=0}^{\infty} xe^{-nx}$ on [0, 1]

- 6. State & prove Weierstrass approximation theorem.
- 7. a) Prove that every uniformly convergent sequence of bounded functions is uniformly bounded.
 - b) If $f \in R(\alpha)$ on [a, b] & *c* be any constant then $cf \in R(\alpha)$ on [a, b].

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.