Roll No.	Total No. of Pages : 02
Total No. of Questions:09	
M.Sc. (Mathmatics) (Sem	.–1)
COMPLEX ANALYSI	S
Subject Code : MSM-103	-22
M.Code: 92798	
Date of Examination : 19-0)1-23
Time : 3 Hrs.	Max. Marks:60

INSTRUCTIONS TO CANDIDATES :

Т

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION B & C have FOUR questions each.
- 3. Attempt any FIVE questions from SECTION B & C carrying EIGHT marks each.
- 4. Select atleast TWO questions from SECTION B & C.

SECTION-A

I. Write short notes on :

- a) Show that real and imaginary parts of a complex number is satisfy the Laplace equation.
- b) Construct the analytic function f(z) = u + iv, where $u = x^3 3xy^2 + 3x + 1$.
- c) Using the definition of an integral as the limit of a sum evaluate $\int_{L} dz$, where L is any rectifiable arc joining the points $z = \alpha$ and $z = \beta$.
- d) State Cauchy's integral formula.
- e) If C is a circle |z-2| = 5, determine whether $\int_C \frac{dz}{z-3}$ is zero.
- f) Expand the function $f(z) = \sin z$ in a Taylor's series about z = 0.
- g) State Laurent's theorem for a function of two variables.
- h) Define Poles and Isolated essential singularity with the help of an example.
- i) Define conformal mapping.
- j) Consider the transformation $w = T_1(z) = \frac{z+2}{z+3}$ and $w = T_2(z) = \frac{z}{z+1}$ find $T_2^{-1} T_1(z)$.

1 M-92798

SECTION-B

- 2. Show that an analytic function cannot have a constant absolute value without reducing to a constant.
- 3. If $f(z) = \frac{x^2 y (y ix)}{x^6 + y^2}$ $(z \neq 0), f(0) = 0$, prove that $\frac{f(z) f(0)}{z} \to as \ z \to 0$ along any

radius vector but not as $z \rightarrow 0$ in any manner.

- 4. State and prove Cauchy-Goursat theorem.
- 5. Let f(z) be analytic within and on the boundary C of a simply connected region D and let z_0 be any point within C, then

$$f'(z) = \frac{1}{2\pi i} \int_C \frac{f(z)}{(z - z_0)^2} dz$$

SECTION-C

6. Expand $\frac{1}{(z+1)(z+3)}$ in a Laurent's series valid for the regions

a) |z| < 1 b) 1 < |z| < 3 c) |z| > 3 d) 1 < |z+1| < 2

- 7. Show that $\int_{0}^{2\pi} \frac{d\theta}{a+b\cos\theta} = \frac{2\pi}{\sqrt{a^2 b^2}}, a > b > 0.$
- 8. Consider the transformation $w = e^{i\pi/4}$ and determine the region in the *w*-plane corresponding to the triangular region bounded by the lines x = 0, y = 0 and x + y = 1 in the *z*-plane.
- 9. Find a bilinear transformation, which transforms |z| = 1 into the real axis in such a way that the point $z_1 = 1$ is mapped into the points $w_1 = 0$, the point $z_2 = -1$ is mapped into $w_2 = 1$ and the point $z_3 = -1$ is mapped into $w_3 = \infty$. Into what regions the interior and exterior of the circle mapped.

NOTE : Disclosure of Identity by writing Mobile No. or Marking of passing request on any paper of Answer Sheet will lead to UMC against the Student.