Roll No.	Total No. of Pages : 02
Total No. of Questions:07	
M.Sc.(Mathematics) (2018 Batch)	(Sem1)
ALGEBRA-I	
Subject Code : MSM-101-1	8
M.Code: 75129	
Date of Examination : 17-01-2	2023

Time: 3 Hrs.

Max. Marks : 70

INSTRUCTIONS TO CANDIDATES :

- 1. SECTION-A is COMPULSORY consisting of FIVE questions carrying TWO marks each.
- 2. SECTION B & C. have THREE questions each.
- 3. Attempt any FOUR questions from SECTION B & C carrying FIFTEEN marks each.
- 4. Select atleast TWO questions from SECTION B & C each.

SECTION-A

1. Write short answers :

- a) Find the inverse of a if $(\mathbb{Z}, *)$ is a group with a * b = a + b 1; $\forall a, b \in \mathbb{Z}$?
- b) Prove that there is no simple group of order 56.
- c) Give an example to show that in a commutative ring R with unity, a prime ideal need not be the maximal ideal.
- d) State first Sylow theorem.
- e) What is a solvable group and give one example.

SECTION-B

- 2. a) Show that in a group of even order, the number of elements of order 2 is odd.
 - b) Show that a non-abelian group of order 6 is isomorphic to the symmetric group S_3 .
- 3. a) Prove that a finite group is solvable if and only if its composition factors are cyclic groups of prime order.

- b) Give an example of a non-abelian group each of whose subgroups is normal.
- 4. a) Prove that the alternating group A_n is simple if n > 4.
 - b) What is a simple group and give one example.

SECTION-C

- 5. a) Prove that every group of order p^2 is abelian, where p is a prime.
 - b) For any ring R and any maximal ideal A \neq R, prove that the quotient ring R/A has no non-trivial ideals.
- 6. a) Prove that the sum of all the nil ideals in a ring R is itself-a nil ideal and it is the largest nil ideal in the ring R.

b) Let G be a finite abelian group of order n. Then, if p is a prime dividing n, show that there is a element $g \in G$ of order p.

- 7. a) State and prove second Sylow theorem.
 - b) Find all the homomorphisms from the ring of integers \mathbb{Z} to \mathbb{Z} .