Roll No.						

Total No. of Pages: 02

Total No. of Questions: 11

Master of Science (Chemistry) (Sem. – 1) NUMERICAL METHODS FOR CHEMISTS

Subject Code: CHL406B-18

M Code: 75119

Date of Examination : 23-01-23

Time: 3 Hrs.

Max. Marks: 50

INSTRUCTIONS TO CANDIDATES:

- 1. SECTION-A is COMPULSORY consisting of FIVE questions carrying TWO marks each.
- 2. SECTION-B contains EIGHT questions carrying FOUR marks each and students have to attempt any SIX questions.
- 3. SECTION-C is COMPULSORY consisting of TWO questions with internal choice carrying EIGHT marks each.

SECTION-A

- 1. Write briefly:
 - a) Compute $\begin{bmatrix} 2 & -3 \\ 4 & -2 \end{bmatrix} X = \begin{bmatrix} -3 & 4 \\ 5 & -1 \end{bmatrix}$
 - b) Define Continuity.
 - c) What is Geometrical meaning of Differential equation?
 - d) Two dice are thrown simultaneously, find the probability of getting six as a product.
 - e) Give an example of two square matrices of order 2 × 2 so that $(A + B)^2 = A^2 + 2AB + B^2$

SECTION-B

- 2. If $A = \begin{bmatrix} 1 & 2 & 5 \\ 1 & -1 & -1 \\ 2 & 3 & -1 \end{bmatrix}$, find A^{-1}
- 3. If $z = x^2 \tan^{-1} \frac{y}{x} y^2 \tan^{-1} \frac{x}{y}$, prove that $\frac{\partial^2 z}{\partial x \partial y} = \frac{x^2 y^2}{x^2 + y^2}$, $x \neq 0, y \neq 0$
- 4. Solve $\left(y + \frac{y^3}{3} + \frac{x^2}{2}\right) dx + \frac{1}{4}(x + xy^2) dy = 0, x > 0$
- 5. If events A and B are two independent events such that P(A) = 0.2, $P(A \cup B) = 0.6$, then find P(B).

- 6. Expand $\begin{vmatrix} 3 & -5 & 4 \\ 7 & 6 & 1 \\ 1 & 2 & 3 \end{vmatrix}$.
- 7. Evaluate $\int \frac{\sin 4x}{\cos 2x} dx$.
- 8. Find solution in series about x = 0

$$(1 - x^2)\frac{d^2y}{dx^2} + 2y = 0$$

9. Prove that ${}^{n}P_{r} = {}^{(n-1)}P_{r} + r. {}^{(n-1)}P_{r-1}$

SECTION-C

10. a) If
$$z = \tan^{-1} \left(\frac{x^3 + y^3}{x - y} \right)$$
, prove that $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = \sin 2z$.
b) If $A = \begin{bmatrix} 2 & 1 & 3 \\ 3 & 1 & 2 \\ 1 & 2 & 3 \end{bmatrix}$ then Verify that $A(\text{Adj.A}) = (\text{Adj.A})A = |A|I_3$

OR

- a) Check that the matrix $A = \frac{1}{6} \begin{bmatrix} 1 & -2 & 1 \\ -2 & 4 & -2 \\ 1 & -2 & 1 \end{bmatrix}$ is an idempotent matrix.
- b) Let $f(x, y) = \left\{\frac{xy}{x^2 + y^2}, \text{ if } (x, y) \neq (0, 0)\right\}, f(0, 0) = 0$, prove that f_x, f_y both exist at (0, 0).
- 11. a) Solve $(2x^2y^2 + y)dx (x^3y 3x)dy = 0$
 - b) Calculate Arithmetic mean from the following data using step-Deviation Method 25,35,40,50,55,60,65,75,85,90

OR

a) By the method of least squares, find a straight line that best fits the following data.

b) Solve
$$(D^4 - D^2)y = 2$$
.

NOTE : Disclosure of Identity by writing Mobile No. or Marking of passing request on any paper of Answer Sheet will lead to UMC against the Student.