Roll No.

Total No. of Pages: 03

Total No. of Questions: 09

MCA (Sem-2) DESIGN AND ANALYSIS OF ALGORITHMS

Subject Code: PGCA-1920

M.Code: 79616

Date of Examination: 21-11-2023

Time: 3 Hrs.

Max. Marks: 70

INSTRUCTIONS TO CANDIDATES:

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- SECTION B & C. have FOUR questions each.
- 3. Attempt any FIVE questions from SECTION B & C carrying TEN marks each.
- 4. Select atleast TWO questions from SECTION B & C.

SECTION-A

1) Answer briefly:

- a. Define Recursion.
- b. Explain divide and conquer method
- State Heap sort with example.
- d. What is lower bound on sorting?
- e. How does the time complexity of splitting/dividing an array vary with size of the array?
- f. Given an array arr = {15, 16, 27, 38, 59} and key = 38; How many iterations are done until the element is found? Show the steps.
- g. An array containing the elements 6,5,4,3,2,1 needs to be sorted. Out of merge sort and quick sort, which one is the best sorting algorithm in this case? Why?
- h. In what manner is a state-space tree for a Branch and Bound algorithm constructed?
- i. What happens when the backtracking algorithm reaches a complete solution?
- j. Write the complexity of of the recurrence relation T(n)=T()+L

SECTION-B

- What are algorithms? What do you mean by polynomial time complexity and logarithmic complexity? Which one is higher? What is the smallest value of n such that an algorithm whose running time is 100n² runs faster than an algorithm whose running time is 2n on the same machine?
- 3. a. $f(n)=3n^{\nu n} g(n)=2^{\nu n \log n}$ prove that f(n)=O(g(n)).
 - b. Analyze the running time of the following recursive pseudo-code as a function of n.

```
Void function(int n) {

if (n<2) return;

clsc counter = 0;

for I = 1 to 8 do

function(n/2);

for I = 1 to n<sup>3</sup>do

counter = counter +1;

}
```

- 4. Explain two real life scenario of dynamic programming. How can the optimal solution to the 0-1 knapsack problem be found with Dynamic Programming? Explain in brief characteristics of dynamic algorithms. Explain how to find Longest Common Subsequence of two strings using Dynamic Programming Method?
- 5. Explain partial 0/1 Knapsack problem. A thief enters a house for robbing it. He can carry a maximal weight of 60 kg into his bag. There are 5 items in the house with the following weights and values. Which items should thief take if he can even take the fraction of any item with him?

Item	Weight	Value/Profit
1	5.	30
2	10	40
3	15	45
4	22	77
5	25	90

SECTION-C

- 6. Write the algorithm of quick sort. Find worst case complexity of it using iterative method.
- 7. Write Dijkstra's algorithm. Output the sequence of vertices identified by the Dijkstra's algorithm for single source shortest path when the algorithm is started at node s for the given weighted directed graph.

- 8. a. What are NP, P and NP-complete problems?
 - b. State the difference between internal sorting and external sorting.
- 9. Which algorithmic approach traverses the state space tree only in DFS manner? Why? Justify your answer with the help of an example.

NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.