Roll No

Total No. of Questions: 09

Total No. of Pages: 02

MCA (Sem-2) DESIGN AND ANALYSIS OF ALGORITHMS

Subject Code: PGCA-1920

M.Code: 79616

Date of Examination: 11-05-2024

Time: 3 Hrs.

Max. Marks: 70

INSTRUCTIONS TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION B & C. have FOUR questions each.
- 3. Attempt any FIVE questions from SECTION B & C carrying TEN marks each.
- 4. Select atleast TWO questions from SECTION B & C.

SECTION-A

1. Write briefly:

What is difference between an algorithm and a program?

State principle of optimality.

- c. What do you mean by control abstraction?
- d. What are implicit and explicit constraints?
- e. How is randomized quicksort algorithm different from quicksort algorithm?
- f. What is the time complexity of conventional matrix multiplication method and Strassen's matrix multiplication method?
- g. Prove that if $f_1(n) = O(g_1(n))$ and $f_2(n) = O(g_2(n))$, then $f_1(n) + f_2(n) = O(\max(g_1(n) + g_2(n)))$.
- h. Define the following terms in context of backtracking: E-node, live node, and dead node.
- What do you mean by recurrence relations? How are they solved?
- j. What are NP-hard and NP-complete problems?

SECTION-B

- What are asymptotic notations? Describe with the help of examples various commonly used asymptotic notations.
 - 3. What is 0/1 Knapsack, problem? Describe how 0/1 knapsack problem can be solved using branch- and-bound algorithm design strategy. Using LCBB, solve the following instance of 0/1 knapsack problem: n=5, p()=(10, 15, 6, 8, 4), w()=(4, 6, 3, 4, 2) and m=12.
- What do you mean by Hamiltonian circuit? Describe how Hamiltonian circuit problem can be solved using backtracking algorithm design strategy?
 - 5. What do you mean by control abstraction? Using the control abstraction, describe in detail greedy approach of algorithm design.

SECTION-C

- Describe quicksort algorithm for sorting a given list of elements. Perform its average and worst-case time complexity analysis. Is quicksort algorithm stable?
- Describe in detail breadth-first search and depth-first search. What are the applications of each method?
- Describe the problem classes P, NP, NP-hard and NP-complete by giving an example of each class.
 - What is string matching? Describe a string-matching algorithm. Analyze the time and space complexity of the described algorithm.

NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.