Roll No.

Total No. of Pages: 02

Total No. of Questions: 09

BMCI (2013 Batch) (Sem.-3)
MATHEMATICS - III (Computer Oriented)
Subject Code: BMCI-302

M.Code: 70646

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

Q1. Answer briefly:

a) If
$$A = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$$
. Prove that $AA^T = I$

b) Determine the rank of the matrix =
$$\begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 2 \\ 2 & 6 & 5 \end{bmatrix}$$

- c) Find the geometric mean for the weight of 5 persons in lbs given by 100, 120, 85, 140, 110.
- d) Obtain mode of the following distribution

Marks:	10-20	20-30	30-40	40-50	50-60	60-70
Frequency:	8	12	25	45	11	9

- e) Find y in terms of x when $\frac{dy}{dx} = x^3$ and y = 8 at x = 2
- f) Find the derivative of $y = \sin x (\log \cos x)$

g) Evaluate
$$\int_{-1}^{3} |x-2| dx$$

h) Evaluate
$$\int (\tan x + \cot x) dx$$

i) Define Trapezoidal rule and simpson's y_3 rule.

j) Evaluate
$$\int_{0}^{6} \frac{dx}{1+x^2}$$
 using Simpson's 3/8 rule taking $h = 1$.

SECTION-B

Q2. Solve the following equations using Gauss elimination method.

$$x + 2y + 3z = 0$$
, $2x + 3y + 4z = 0$, $7x + 13y + 19z = 0$

Q3. If
$$y = \ln \sqrt{\frac{1 + \tan x}{1 - \tan x}}$$
, prove that $\frac{dy}{dx} = \sec 2x$

Q4. Evaluate
$$\int \sec^3 x \, dx$$

Q5. Calculate the first four moments of the following distribution about mean:

f	0	1	2	3	4	5	6	7	8
f	1	8	28	56	70	56	28	8	1

Q6. Find
$$\frac{dy}{dx}$$
:

(i)
$$y = (x^2 - 5x + 6)^{1/3} (x^2 + 1)^{2/3}$$

(ii)
$$x^y = e^{x-y}$$

SECTION-C

Q7. If
$$A = \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$$
. Show that $A^3 = A^{-1}$

Q8. Prove that
$$\int \sqrt{x^2 - a^2} dx = \frac{x}{a} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log|x + \sqrt{x^2 - a^2}| + C$$
 where C is constant. $c_1 - \frac{a^2}{2} \log a$.

Q9. Find the shortest distance between the line
$$y = 10 - 2x$$
 and the ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$

NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.