Roll No.

Total No. of Pages : 02

Total No. of Questions : 18

B.Tech (CSE) (Sem.-4) ENGINEERING MATHEMATICS - III Subject Code : CS-204 Paper ID : [A0495]

Time: 3 Hrs.

Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

- 1) If a complex valued function is analytic at a point, is it differentiable at that point too?
- 2) Define centre of mass of a body.
- 3) Is the mapping $f(z) = z^2$ a conformal mapping?
- 4) Define Bessel's function of kind 1.
- 5) Give an example of a uniform continuous function on the interval [1, 2].
- 6) State fundamental theorem of integral calculus.
- 7) Write down the statement of Cauchy's integral theorem.
- 8) Write the Cauchy Riemann equations for an analytic function.
- 9) What is a pole singularity?
- 10) Find Laplace transform of the function $f(t) = \sinh(at)$.

SECTION-B

11) Apply Taylor's method of order 2 with N = 10 to initial value problem.

$$y' = y - t^2 + 1$$
, $0 \le t \le 2$, $y(0) = 0.5$.

12) Solve $y'' + 4y' + 3y = e^{-t}$, y(0) = 1, y'(0) = 1 by using Laplace transform.

13) Using the Lagrange mean value theorem show that.

$$\left|\cos(b) - \cos(a)\right| \le \left|b - a\right|.$$

- 14) State and prove First shifting theorem in Laplace transformation.
- 15) Expand $f(z) = \frac{1}{z^2 3z + 2}$ in Laurent's series valid for the regions 1 < |z| < 2 and 0 < |z-1| < 1.

SECTION-C

16) Using the Cauchy integral theorem evaluate :

$$\oint_C \frac{dz}{z(z+2)},$$

Where C is any rectangle containing the points z = 0 and z = -1 inside it.

17) Find the Laplace transform of the periodic function defined by the sawtooth wave

$$f(t) = t$$
, $0 \le t \le a$, $f(t+a) = f(t)$.

18) The cross sections of a certain solid made by planes perpendicular to the x-axis are circles with diameters extending from curve $y = 3x^2$ to the curve $y = 16 - x^2$. Find the volume of the solid which lies between the points of intersection of these curves.