Roll No.

Total No. of Pages: 02

Total No. of Questions: 09

B.Tech. (AI&ML / AI&ML and Data Science / CSE / Cyber Security / IOT /
Data Science / Internet of Things and Cyber Security including Block
Chain Technology) (Sem-3)

MATHEMATICS-III

Subject Code: BTAM304-18

M.Code: 76438

Date of Examination: 01-06-2023

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

1. Write Briefly:

- a) Examine for saddle points f(x,y) = xy.
- b) Change order of integration for $\int_{y=0}^{1} \int_{x=y^2}^{\sqrt{y}} f(x,y) dxdy$.
- c) Prove that convergent sequence has a unique limit.
- d) Discuss convergence of $\sum \frac{2n^2-2}{2^n+1}$.
- e) State Cauchy integral test.
- f) Prove that if M(x, y)dx + N(x, y)dy = 0 is exact then $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$.
- g) Define Bernoulli's equation.
- h) Solve $(D^3 + D)y = 0$.

- i) Define Legendre's .differential equation
- j) Solve $(x-1)^2y'' (x-1)y' + y = 0$.

SECTION-B

2. If
$$u = \log(x^3 + y^3 + z^3 - 3xyz)$$
, show that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right)^2 u = -9(x + y + z)^{-2}$.

- 3. Test for convergence the series $\sum \frac{n!}{(n+1)^n} x^n$.
- 4. Discuss uniform convergence of $\sum \frac{a^n x^n}{n^2 + 1}$.
- 5. Solve $(xy^3 + y)dx + 2(x^2y^2 + x + y^4)dy = 0$.
- 6. Using the method of variation of parameters, solve $\frac{d^2y}{dx^2} + y = \tan x$.

SECTION-C

- 7. Find the volume bounded by the paraboloid $x^2 + y^2 = az$, the cylinder $x^2 + y^2 = 2ay$ and the plane z = 0.
- 8. Solve $\frac{dy}{dx} \frac{dx}{dy} = \frac{x}{y} \frac{y}{x}$.
- 9. Solve $\frac{d^2y}{dx^2} + \frac{1}{x} \frac{dy}{dx} = 12 \frac{\log x}{x^2}$.

NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.