i olal No. of Questions: 18

B.Tech. (AI & ML / CE / CSE) / B.Tech CSE (Internet of Things & Cyber Security Including Block Chain Technology) / PIT B.Tech CSE (Sem.-4)

DESIGN & ANALYSIS OF ALGORITHMS

Subject Code: BTCS-403-18

M.Code: 77629

Date of Examination: 09-07-22

Time: 3 Hrs.

Max Marks: 60

INSTRUCTIONS TO CANDIDATES:

- 1. SECTION-A is COMPULSORY consisting of TEN quosilons carrying TWO marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

Answer briefly:

- Give an example of dynamic programming approach.
- What do you understand by algorithm exclusion?
- 3 What is NP-complete problem?
- 4. What is asymptotic time complexity?
- 5. What is the basic principal of divide and conquer?
- Let the various applications of DFS and BFS.
- 7. How the Prim's algorithm is better in finding the Minimal spanning tree in comparison to the Kruskal's method?
- 3 What are houristics? What are their characteristics?
- 9. What are the various steps in the design of an algorithm?
- 16 Are the sub-solutions overlapping in dynamic programming approach?

11 11 11 21

SECTION-B

- Explain the Big-Oh computation for each of the following control structures: 11.
 - (i) Sequencing
 - (ii) If-then-else
 - (iii) "for" loop
 - (iv) "While" loop
 - (v) Recursion
- Solve the following instance of the knapsack problem using branch and bound technique 12. (assume W = 3)

Items	W	v
11	1	2
12	2	3
13	3	4

- Apply Prim's Algorithm and Kruskal algorithm to the graph to obtain minimum spanning tree. Do these algorithms generate same output-Justify.
- Explain the concepts of P, NP and NP completeness. 14.
- What are NP hard problems? Write short notes on the procedures of the following 15. approximation algorithms to solve TSP using suitable examples.
 - a) Nearest Neighbor algorithm.
 - b) Twice-around-the-tree algorithm.

SECTION-C

- Write an algorithm for merging two sorted arrays into one array. Explain with suitable 16. examples.
- Modify the Dijkastra's algorithm to solve All-Pairs-Shortest-Path problem. 17.
- Find the Big-Oh notations for the following functions: 18.
 - (i) f(n) = 78889
 - (ii) $f(n) = 6n^2 + 135$
 - (iii) $f(n) = 7n^2 \pm 8n \pm 56$
 - (iv) $f(n) = n^4 + 35n^2 + 84$

NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet wifi lead to UMC against the Student.