Roll No.

Total No. of Pages: 02

Total No. of Questions: 09

B.Tech. (Sem.-2)
MATHEMATICS-II

Subject Code: BTAM-202-18

M.Code: 91958

Date of Examination: 23-01-2023

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

 SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.

- 2. SECTION B & C. have FOUR questions each.
- 3. Attempt any FIVE questions from SECTION B & C carrying EIGHT marks each.
- 4. Select atleast TWO questions from SECTION B & C.

SECTION-A

1. a) Find the integrating factor of differential equation: $(x^2 + y^2 + x) dx + xydy = 0$; x > 0.

b) Solve the differential equation: $x^2 \left(\frac{dy}{dx}\right)^2 + xy\frac{dy}{dx} - 6y^2 = 0$.

c) Define homogeneous linear differential equation with constant coefficients.

- d) Find the differential equation of all spheres of fixed radius having centres in xy plane.
- e) Solve the lagrange's equation: p + q = 0.
- f) Classify the differential equation: $\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$.
- g) What are the advantages of Regula Falsie method?
- h) What is the relation between ∇ and E?

- i) What is Simpson's $\frac{1}{3}$ rule?
- j) State Euler's modified iteration formula.

SECTION-B

- 2. Solve $y''' y'' + 4y' 4y = \sin 3x$.
- 3. Solve the differential equation $(1-x^2)\frac{d^2y}{dx^2} 2x\frac{dy}{dx} + 2y = 0$.
- 4. Solve the following Lagrange's partial differential equation :

$$(y + z) p + (z + x) q = (x + y)$$

5. Solve the equation $p^2 = q + px$ Charpit's method.

SECTION-C

- 6. Use bisection method to solve the equation $x^3 + x^2 + x + 7 = 0$ correct to three decimal places.
- 7. Given that $\sum_{11}^{20} f(x) = 44060$, $\sum_{14}^{20} f(x) = 38220$, $\sum_{17}^{20} f(x) = 27178$, and f(20) = 8450. Find the value of f(11).
- 8. Solve the initial value problem y' = x(y x), y(2) = 3 in the interval [2, 24] using the classical Runge-Kutta fourth order with step size h = 0.2.
- 9. Tabulate the solution of $\frac{dy}{dx} = x + y$, y(0) = 0 for $0.4 \le x \le 1.0$ with h = 0.1 using Predictor Corrector formula.

NOTE: Disclosure of Identity by writing Mobile No. or Marking of passing request on any paper of Answer Sheet will lead to UMC against the Student.