Roll No.

Total No. of Pages: 03

Total No. of Questions: 09

B.Tech. (ME) (Sem-2)

MATHEMATICS-II

Subject Code: BTAM203-18

M.Code: 76256

Date of Examination: 16-06-2023

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION B & C have FOUR questions each.
- 3. Attempt any FIVE questions from SECTION B & C carrying EIGHT marks each.
- 4. Select atleast TWO questions from SECTION B & C.

SECTION-A

1. Solve:

- a) Find general solution of $y = xy' (y')^3$.
- b) Find Integrating Factor of $(5x^3 + 12x^2 + 6y^2)dx + 6xydy = 0$.
- c) Find non-ordinary (singular) points of $(x^2 + 2x) \frac{d^2y}{dx^2} + (x+1) \frac{dy}{dx} y = 0$.
- d) Check exactness of $ye^{xy}dx + (xe^{xy} + 2y)dy = 0$.
- e) Solve $x \frac{dy}{dx} + y = x \log x$.
- f) Write C-R equations in polar co-ordinates.
- g) Show that the function $u = e^{-2xy}(x^2 y^2)$ is harmonic.

h) Find the image of the region bounded by the lines x = 0, y = 0, x = 2, y = 1 under the transformation w = z + 1 - 2i.

i) Evaluate
$$\int_{1-i}^{2+i} (2x+iy+1)dz$$
 along $x = t+1$, $y = 2t^2 - 1$.

j) State Maximum Modulus Theorem.

SECTION-B

- 2. a) Find complete solution of the differential equation $(x^3y^2 + x)dy + (x^2y^3 y)dx = 0$.
 - b) Solve the differential equation $\frac{d^2y}{dx^2} + \frac{2}{x}\frac{dy}{dx} = \frac{2 \log x^2}{x^2}.$
- 3. a) Solve $y + px = p^2x^4$.
 - b) Using the method of variation of parameters, solve $y'' 2y' + y e^x \log x$.
- 4. a) Solve: $\frac{dy}{dx} + 2y = y^2$.
 - b) Solve: $y = 2px + y^2p^3$.
- 5. Solve $(1+x^2)y'' + xy' y = 0$ in series about x 0.

SECTION-C

- 6. a) Show that f(z) = z|z| is not analytic anywhere.
 - b) Evaluate $\int_C \tan z dz$, where C is |z| = 1.

- 7. a) Prove that if f(z) = u + iv is an analytic function then u and v are harmonic functions.
 - b) Expand $f(z) = \frac{1}{z^2 + 4}$ as a Taylor's series about z = -i.
- 8. a) Show that $u = \frac{1}{2}\log(x^2 + y^2)$ is harmonic. Determine its analytic function. Find its conjugate also.
 - b) Evaluate $\int_{C} \frac{1}{ze^{z}} dz$ where C is |z| = 1.
- 9. Find the Laurent's series expansion of $f(z) = \frac{1}{|z||z-1|^2}$ in the region 0 < |z| < 1 and 0 < |z| -1 < 1.

NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

3 | M-76256 (S1)-2687