Roll No.						

Total No. of Pages: 02

Total No. of Questions: 09

B.Tech (Sem. - 1)

MATHEMATICS-I

Subject Code: BTAM-106-18

M Code: 75368

Date of Examination : 11-01-2023

Time: 3 Hrs.

Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION B & C have FOUR questions each, carrying EIGHT marks each.
- 3. Attempt any FIVE questions from SECTION B & C, selecting atleast TWO questions from each of these SECTIONS B & C.

SECTION-A

- 1. Answer the following:
 - a) Define a vector space.
 - b) If A and B are square matrices. Is AB = BA? Justify.
 - c) If A and B are symmetric matrices, then show that AB BA is skew-symmetric.
 - d) Define eigenvalues of a matrix.
 - e) Find the length of the Helix traced by

 $r(t) = a\cos t\mathbf{i} + a\sin t\mathbf{j} + ct\mathbf{k}, \quad a > 0, 0 \le t \le 2\pi$

- f) Find the unit normal vector to the surface $xy^2 + 2yz = 8$ at the point (3, -2, 1).
- g) Define divergence of a vector field.
- h) Let f be a differentiable scalar field. Then calculate the value of $\nabla \times (\nabla f)$.
- i) Find the length of the arc given by $\mathbf{r}(t) = t\mathbf{i} + t^2\mathbf{j}$, $0 \le t \le \pi/2$.
- j) Evaluate $\int_C (x^2 y^2) ds$, where C is the curve defined by $x = 3\cos t$, $y = 3\sin t$, $0 \le t \le 2\pi$.

SECTION B

2. a) If *x*, *y* and *z* are different and

$$\begin{vmatrix} x & x^2 & 1+x^3 \\ y & y^2 & 1+y^3 \\ z & xz^2 & 1+z^3 \end{vmatrix} = 0$$

then show that 1 + xyz = 0

b) Solve the following system of equations using Gauss elimination method.

x - y + z = 1, 2x + y - z = 2, 5x - 2y + 2z = 5

3. a) Examine whether the following set of vectors are linearly independent.

(1,2,3,4), (2,0,1,2), (3,2,4,2)

b) Find the inverse of the matrix by using Gauss-Jordan method.

$$\begin{bmatrix} 2 & 3 & 1 \\ 1 & 3 & 3 \\ 0 & 1 & 2 \end{bmatrix}$$

4. Find all the eigenvalues and the corresponding eigenvectors of the following matrix.

$$\begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}$$

- 5. a) The eigenvalues of 3×3 matrix A corresponding to the eigenvalues 1,2,3 are $[-1, -1, 1]^t$, $[0, 1, 0]^t$, $[0, -1, 1]^t$ respectively. Find the matrix A
 - b) Prove that the eigenvectors of a symmetric matrix are real

SECTION C

- 6. a) Find directional derivative of the function $f(x, y) = x^2y^3 + xy$ at a point (2,1) in the direction of a unit vector that makes angle $\pi/3$ with x-axis.
 - b) If **a** is a constant and $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$, show that curl $(\mathbf{a} \times \mathbf{r}) = 2\mathbf{a}$
- 7. a) Show that the vector field $\mathbf{v} = (y^2 x^2 + y)\mathbf{i} + x(2y + 1)\mathbf{j}$ is irrotational and find a scalar function f(x, y, z) such that $\mathbf{v} = \text{grad } \mathbf{f}$
 - b) If $f(x, y) = x^2 xy y + y^2$, find all points where the directional derivative in the direction $\mathbf{b} = (\mathbf{i} + \sqrt{3}\mathbf{j})/2$ is zero.
- 8. a) Evaluate $\int_C (x+y)dx x^2dy + (y+z)dz$ where C is $x^2 = 4y, z = x, 0 \le x \le 2$
 - b) Find the work done by the force $\mathbf{F} = -xy\mathbf{i} + y^2\mathbf{j} + z\mathbf{k}$ in moving a particle over a circular path $x^2 + y^2 = 4$, z = 0 from (2,0,0) to (0,2,0).
- 9. Verify Green's theorem for $f(x, y) = e^{-x} \sin y$, $g(x, y) = e^{-x} \cos y$ and C is the square with vertices at (0,0), $(\pi/2,0)$, $(\pi/2,\pi/2)$, $(0,\pi/2)$.

NOTE : Disclosure of Identity by writing Mobile No. or Marking of passing request on any paper of Answer Sheet will lead to UMC against the Student.