Roll No.

Total No. of Pages: 03

Total No. of Questions: 09

B.Tech. (CE/ CSE/EE/ECE/ME) (Sem-1) ENGINEERING MATHEMATICS-I

Subject Code: BTAM-101 M.Code: 54091

Date of Examination: 07-06-2023

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION B & C. have FOUR questions each.
- 3. Attempt any FIVE questions from SECTION B & C carrying EIGHT marks each.
- 4. Select atleast TWO questions from SECTION B & C.

SECTION-A

1. Solve:

a) If $\vec{F} = (x+y+1)\hat{i} + \hat{j} - (x+y)\hat{k}$. Then show that \vec{F} curl $\vec{F} = 0$.

b) Find $\frac{\partial y}{\partial x}$ if $z = \sin^{-1} \frac{y}{x}$.

c) State Gauss Divergence theorem

d) If $u = x \sin y$ and $v = y \sin x$, find $\frac{\partial(u, v)}{\partial(x, y)}$.

- e) If an error committed in measuring the side of square is 2 %. Find the error in calculating the area.
- f) Evaluate $\int_0^\infty \int_0^\infty \frac{e^{-y}}{y} dy dx$.
- g) Find the gradient of the function $\phi = x^3 + y^3 + 3xyz$ at (1, -2, -1).

- h) A fluid motion is given by $\vec{v} = (y \sin z \sin x)\hat{i} + (x \sin z + 2yz)\hat{j} + (xy\cos z + y^2)\hat{k}$. Is the motion irrotational?
- i) Obtain the local extreme values of the function $f(x, y) = x^2 + 2xy$.
- j) State Euler theorem.

SECTION-B

2. If
$$U = \operatorname{Cosec}^{-1} \left(\frac{\frac{1}{x^2 + y^2}}{\frac{1}{x^3 + y^3}} \right)$$
, prove that $x^2 \frac{\partial^2 U}{\partial y^2} + 2xy \frac{\partial^2 U}{\partial x \partial y} + y^2 \frac{\partial^2 U}{\partial y^2} = \frac{13 + \tan^2 U}{144}$.

- 3. A rectangular box, open at the top is to have a volume of 32 cubic feet. Find the dimensions of the box, requiring least material for its construction.
- 4. Trace the curve $y^2 = \frac{x-3}{x^2-6x+7}$.
- 5. a) Find all the asymptotes of the curve $r \sin\theta = a \cos 2\theta$
 - b) Find centre of gravity of a plate whose density $\rho(x,y)$ is constant and is bounded by the curves $y = x^2$ and y = x + 2. Also find moment of inertia about x-axis.

SECTION-C

- 6. a) Evaluate the integral by changing the order of integration $\int_0^1 \int_x^1 \sin y^2 dy dx$.
 - b) Evaluate the following $\int_0^1 \int_x^1 \frac{x \, dx \, dy}{\sqrt{x^2 + y^2}}$.
- 7. Verify Stoke's Theorem for:

 $\vec{F} = (x+y)\hat{i} + (2x+z)\hat{j} + (y+z)\hat{k}$ for the surface of triangular lamina with vertices (2,0,0): (0,3,0); (0,0,6).

2 | M-54091 (S1)-2192

- 8. Find the volume of the portion of the sphere $x^2 + y^2 + z^2 = a^2$ lying inside the cylinder $x^2 + y^2 = ax$.
- 9. a) Prove that $\nabla \cdot (\overrightarrow{A} \times \overrightarrow{B}) = B \cdot (\overrightarrow{\nabla} \times \overrightarrow{A}) \overrightarrow{A} \cdot (\nabla \times B)$.
 - b) Evaluate $\int_{c} (x^2 + xy) dx + (x^2 + y^2) dy$, where c is the square formed by the lines $x = \pm 1$, $y = \pm 1$.

https://www.ptustudy.com Whatsapp @ 9300930012 Send your old paper & get 10/-अपने पुराने पेपर्स भेजे और 10 रुपये पायें,

Paytm or Google Pay सं

NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

3 M-54091 (S1)-2192