|--|--|

Total No. of Pages : 03

Total No. of Questions : 18

B.Tech. (Electrical Engg.) (2018 & Onwards) (Sem.–1,2) OPTICS & MODERN PHYSICS Subject Code : BTPH-102-18 M.Code : 75354

Time: 3 Hrs.

Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION B & C. have FOUR questions each.
- 3. Attempt any FIVE questions from SECTION B & C carrying EIGHT marks each.
- 4. Select atleast TWO questions from SECTION B & C.

SECTION-A

Write briefly :

- Q1. Mention the essential characteristics of a medium supporting the propagation of mechanical waves.
- Q2. What do you understand by impedance matching?
- Q3. Make a comparison between Fresnel and Fraunhofer diffraction.
- Q4. State Huygens's principle.
- Q5. Differentiate between spontaneous and stimulated emission.
- Q6. State Uncertainty principle and mention its different forms.
- Q7. Define Expectation Value.
- Q8. What is Born interpretation of probability densities?
- Q9. What is the origin of energy bands?
- Q10. Differentiate VI characteristics of a p-n junction in forward and reverse bias.

(S1)-497

SECTION-B

Q11. a	a) Explain free vibrations, damped vibrations, forced vibrations and resonance, giving example of each.	g one 3			
b	Discuss the theory of forced harmonic oscillations. How does sharpness of reson depend on damping?	ance 5			
Q12. a	a) Derive the equation for transverse waves on a string and discuss reflection transmission of such waves at a boundary.	and 4			
b	b) Derive the equation for longitudinal waves on a string and discuss reflection transmission of such waxes at a boundary.	and 4			
Q13. a	a) Derive the expressions for reflectance and transmittance when an EM plane was incident normal at an interface.	ve is 5			
b	b) Define these: Fresenel's equations, Brewster's angle and total internal reflection.	3			
Q14. a	a) Explain the construction, working and energy diagram of Ruby laser.	5			
b	b) Make a comparison between solid state lasers and gas lasers in terms of advantages and limitations.	their 3			
SECTION-C					
Q15. U	Using Uncertainty principle, prove the :				
а	a) Non-existence of electron in the nucleus	4			
b	b) Radius of Bohr's first orbit	4			
Q16. a	a) Solve time-independent Schrodinger wave equation for a linear harmonic oscillate derive expressions for its eigen functions and eigen-energy values.	or to 5			
b	b) Noamilse the wave function	3			
	Ψ (x) = 0 outside the box of size 1				
	Ψ (x) = A sin kx for 0 <x<1< td=""><td></td></x<1<>				
	Where $k = \pi/1$				

https://www.ptustudy.com

Q17. a)	Using Bloch's theorem write the solutions for a wave function in a periodic potential	. 6
b)	Write the limitations of free electron theory of metals.	2
Q18. a)	Distinguish between metals, semiconductors and insulators on the basis of their ene band diagrams.	rgy 3
b)	Differentiate between intrinsic and extrinsic semiconductors.	2
c)	Discuss the dependence of Fermi level on carrier-concentration and temperature.	3

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

(S1)-497