Roll No.

Total No. of Pages:02

Total No. of Questions: 09

B.Tech. (Agriculture Engineering)/ (Automobile Engineering)/ (CSE)/ (ME)/ (Sem-1,2)

ELECTROMAGNETISM

Subject Code: BTPH-103-18

M.Code: 75357

Date of Examination: 22-06-2023

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION B & C. have FOUR questions each.
- 3. Attempt any FIVE questions from SECTION B & C carrying EIGHT marks each.
- 4. Select atleast TWO questions from SECTION B & C.

SECTION-A

1. Write briefly:

- a) What do you mean by gradient of a scalar field?
- b) What are different ways in which an emf is induced around a loop?
- c) What do you mean by solenoidal and irrotational field?
- d) Explain why magnetic monopole cannot exist? Also, write an equation for it.
- e) How is Gauss's law dependent on Ampere's circuital law?
- f) Two straight wires are kept in air 2m apart carrying currents 80A and 30A in the same direction. Calculate the force between them and specify its nature.
- g) State Faraday's laws of electromagnetic induction.
- h) Explain the concept of displacement current.
- i) What is the physical significance Poynting vector?
- j) What do you mean by ferromagnetic material?

1 M-75357 (S1)-2839

SECTION-B

- 2. Derive and discuss the boundary conditions for the electrostatic field.
- 3. Show that Coulomb's law can be deduced from Gauss's law using symmetry conditions.
- 4. a) Explain the concept of Maxwell's displacement current and show how it led to the modification of Ampere's law?
 - b) If the charge on a proton is 1.6×10^{-19} Coulomb, find the magnitude of the electric field at a distance of 1 Å from the proton.
- 5. a) What are atomic magnetic moments? Define the terms magnetization, permeability susceptibility and flux density.
 - b) Diamagnetic $A1_2O_3$ is subjected to an external magnetic field of 10^5 A/m. Evaluate magnetization and magnetic flux density in $A1_2O_3$ (Susceptibility of $A1_2O_3 = -5 \times 10^{5}$).

SECTION-C

- 6. a) What is Lenz's law of electromagnetic induction? Explain how the direction of current in a circular loop can be established with the help of Lenz's law?
 - b) A square loop of wire of side 5cms is placed in a uniform magnetic field such that the normal to the loop makes an angle of 60° with the direction of B. If the magnetic field strength is given by $(0.5 0.002t^2)T$. Find the e.m.f. induced in the loop at t = 2s.
- 7. What are Maxwell's equations? Derive Maxwell's equations (differential form). Discuss the integral form of the above equations. What is the significance of these equations to electricity and magnetism?
- 8. State and Prove that the power of electromagnetic wave leaving a volume is equal to the difference between the rate of decrease in energy stored in electric and magnetic fields and ohmic power dissipated.
- 9. Explain the reflection and transmission of an electromagnetic wave incident normally on a plane between media of impedance Z_1 and Z_2 . Find out the expressions for the reflection and transmission coefficients.

NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

2 | M-75357 (S1)-2839