Roll No.						

Total No. of Questions: 07

B.Sc. (Computer Science) (Sem. – 6) REAL ANALYSIS Subject Code: BCS-601 M Code: 72781

Date of Examination : 09-01-2023

Time: 3 Hrs.

INSTRUCTIONS TO CANDIDATES:

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains SIX questions carrying TEN marks each and students have to attempt any FOUR questions.

SECTION-A

- 1. Write briefly:
 - a) Show that the sequence $\{f_n(x)\}$, where $f_n(x) = \frac{\sin nx}{\sqrt{n}}$ is uniformaly convergent on $[0,2\pi]$.
 - b) Show that the series $\sum_{1}^{\infty} \frac{1}{1+n^2x}$ converges uniformly in $[1, \infty)$.
 - c) Find the radius of convergence of the power series $\sum_{n=1}^{\infty} \frac{2(n-1)}{n^n} x^n$.
 - d) Show that the series $\sum_{1}^{\infty} \frac{\sin nx}{n^3}$ is term by term differentiable.
 - e) State M_n -Test for uniform convergence of sequence of functions.
 - f) Show that the function $f(z) = \frac{xy^3}{x^2+y^6}$, $z \neq 0$, f(0) = 0 is not continuous at origin.
 - g) Let R be the triangular region bounded by the lines x = 0, y = 0 and x + y = 1 in zplane.Determine the region R^{*} of w-plane into which R is mapped under the transformationw = 3z.
 - h) Find the modulus and argument of $\left(\frac{2+i}{3-i}\right)^2$.
 - i) Find the Fourier series for the function $f(x) = |x|, -\pi < x < \pi$.
 - j) Write $f(z) = z^3 + z + 1$ in the form f(z) = u(x, y) + iv(x, y).

Total No. of Pages: 02

Max. Marks: 60

SECTION-B

- 2. a) Test the sequence $\{f_n(x)\}$, where $f_n(x) = \frac{nx}{1+n^3x^2}$ for uniform convergence on [0,1].
 - b) Show that the sequence $\{f_n\}$, where $f_n(x) = \frac{1}{x+n}$ is uniformly convergent in any interval [0,b], b > 0.
- 3. a) Prove that 0 is a point of non-uniform convergence of the series $\sum_{1}^{\infty} \frac{x}{[(n-1)x+1][nx+1]}$.
 - b) Show that the series $\sum_{1}^{\infty} \frac{1}{n^3 + n^4 x^2}$ is term by term differentiable.
- 4. a) Show that $\tan^{-1} x = x \frac{x^3}{3} + \frac{x^5}{5} \frac{x^7}{7} + \cdots$, for $|\mathbf{x}| \le 1$
 - b) Determine the radius of convergence of $\sum_{1}^{\infty} \angle (2n-1)x^n$.
- 5. a) Find an analytic function whose imaginary part is $e^{2x}(x\cos 2y y\sin 2y)$.
 - b) Show that $w = \sinh z$ satisfies the CR-equations.
- 6. a) Show that the function $f(z) = \begin{cases} \frac{xy^2(x+iy)}{x^2+y^4}, & z \neq 0\\ 0, & z = 0 \end{cases}$ is not differential at z = 0
 - b) Determine the regions of z-plane for which $|z 1| + |z + 1| \le 4$.
- 7. a) Obtain Fourier series of the function $f(x) = \left(\frac{\pi x}{2}\right)^2$ in interval $0 < x < 2\pi$. b) Find the image of the infinite strip $\frac{1}{4} \le y \le \frac{1}{2}$ under the transformation $w = \frac{1}{z}$.

NOTE : Disclosure of Identity by writing Mobile No. or Marking of passing request on any paper of Answer Sheet will lead to UMC against the Student.