	Roll No												
--	---------	--	--	--	--	--	--	--	--	--	--	--	--

Total No. of Pages : 02

Total No. of Questions : 09

B.Sc. Honours (Mathematics) (Sem.–5) PARTIAL DIFFERENTIAL EQUATIONS Subject Code : UC-BSHM-504-19 M.Code : 91062 Date of Examination : 19-12-22

Time: 3 Hrs.

Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION B & C. have FOUR questions each.
- 3. Attempt any FIVE questions from SECTION B & C carrying EIGHT marks each.
- 4. Select atleast TWO questions from SECTION B & C.

SECTION-A

I. Write short notes on :

- a) What do you mean by Linear Partial Differential Equation? Give an example.
- b) Form the partial differential equation by eliminating *a* and *b* from $z = axe^{y} + \frac{1}{2}a^{2}e^{2y} + b$.
- c) Find the differential equation of all spheres having centres on x-axis.
- d) Define order and degree of Partial differential equation.
- e) Form the partial differential equation by eliminating arbitrary function from the equation z = f(y/x)
- f) Solve yz p + zx q = xy, where $p = \frac{\partial z}{\partial x} \& q = \frac{\partial z}{\partial y}$.
- g) Write down the Laplace equation in cylindrical coordinates (r, θ , z).

h) Classify the partial differential equation:
$$\frac{\partial^2 z}{\partial x^2} = x^2 \frac{\partial^2 z}{\partial y^2}, x \neq 0$$
.

- i) Write down two dimensional heat equation in polar form (r, θ) .
- j) Write down the Wave equation in Spherical polar coordinates (r, θ, ϕ) .

1 | M-91062

SECTION-B

2. Find the complete integral of
$$(x^2 + y^2) (p^2 + q^2) = 1$$
, $\left(\text{where } p = \frac{\partial z}{\partial x} \& q = \frac{\partial z}{\partial y} \right)$

3. Find the integral surface of (x - y)p + (y - x - z)q = z, (where $p = \frac{\partial z}{\partial x} \& q = \frac{\partial z}{\partial y}$) which passes through the circe z = 1, $x^2 + y^2 = 1$.

4. Solve
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$
 subject to the conditions:

 $u(0, y) = u(l, y) = 0; 0 \le y \le m$

and u(x, m) = 0, u(x, 0) = F(x); $0 \le x \le 1$

5. Convert the Laplace equation from Cartesian form to polar form (r, θ)

SECTION-C

- 6. Solve the two-dimensional wave equation in Cartesian coordinates by variable separation method.
- 7. A tightly stretched unit square membrane starts vibrating from rest and initial displacement is $\lambda \sin 2\pi x \sin \pi y$. Find deflection at any instant.
- 8. Find the temperature in a bar of length 10 cm that is perfectly insulated and heat flow in the bar is given by $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$. The ends of bar are kept at temperature 0°c and initial temperature is $f(x) = 10x x^2$.
- 9. A rod of length/insulated sides, is initially at a uniform temperature u_0 . Its ends are suddenly cooled at 0°c and are kept at that temperature. Find the temperature u(x, t).

NOTE : Disclosure of Identity by writing Mobile No. or Marking of passing request on any paper of Answer Sheet will lead to UMC against the Student.