|--|

Total No. of Pages : 02

Total No. of Questions : 09

B.Sc. (Non-Medical) (Sem.-4) ANALYSIS-II Subject Code : BSNM-405-18 M.Code : 77683 Date of Examination : 22-12-22

Time: 3 Hrs.

Max. Marks : 50

INSTRUCTIONS TO CANDIDATES :

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying ONE mark each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

1. Write briefly :

- a) State Cauchy's criterion for uniform convergence of sequence of functions.
- b) Show that 0 is a point of non-uniform convergence of the sequence $\{f_n(x)\}$ when $f_n(x) = nxe nx^2$, $x \in \mathbb{R}$.
- c) State Weirstrass M-test.
- d) Show that $\sum \frac{\cos n\theta}{nP}$ is uniformly convergent for all real values of θ , where p > 1.
- e) Find the divergence of function $f(x, y, z) = xy^2 \hat{i} + 2x^2 yz \hat{j} 3yz^2 \hat{k}$ at the point (1, -1, 1).
- f) Determine the constant 'a' so that the vector $\overrightarrow{V} = (x+3y)\overrightarrow{i} + (y-2z)\overrightarrow{j} + (x-az)\overrightarrow{k}$ is solenoidal.
- g) State Gauss's divergence theorem.
- h) Find b_n in the Fourier series expansion of the function f(x) = |x| in the interval $(-\pi, \pi)$
- i) State Weirstrass approximation theorem.

j) Find a_0 in the Fourier series expansion of the function f(x) in the interval $(-\pi, \pi)$, where

$$f(x) = \begin{cases} 0 & -\pi < x \le 0\\ \frac{\pi x}{4} & 0 < x < \pi \end{cases}$$

SECTION-B

- 2. Expand $f(x) = \pi x x^2$ in a half-range sine series in the interval $(0, \pi)$ up to the first three terms.
- 3. Evaluate $\iiint_V \phi dV$, where $\phi = 45x^2y$ and V is the closed region bounded by the planes 4x + 2y + z = 8, x = 0, y = 0, and z = 0
- 4. Prove that div $(r^n \overrightarrow{r}) = (n+3) \overrightarrow{r^n}$.
- 5. Show by M_n test, 0 is a point of non-uniform convergence of the sequence $\{f_n(x)\}$ where $f_n(x) = 1 (1 x^2)^n$.
- 6. Test for uniform convergence and continuity of the sum function of the series for which $f_n(x) = \frac{1}{1+nx}, \quad 0 \le x \le 1.$

SECTION-C

- 7. a) Given the series: $\sin x = x \frac{x^3}{3!} + \frac{x^5}{5!} \frac{x^7}{7!} \dots$, show that one can obtain the expansion of $\cos x$ by differentiation.
 - b) Examine for term by term integration for the series whose sum of first *n* terms is $n^2 x (1-x)^n$.
- 8. a) Find the Fourier series for the function $f(x) = x^3$ in $(-\pi, \pi)$
 - b) Evaluate $\oint_C (x^2 \cosh y) dx + (y + \sin x) dy$ by Green's theorem, where C is the rectangle with vertices $(0, 0), (\pi, 0), (\pi, 1), \text{ and } (0, 1)$.
- 9. If $\overrightarrow{F} = x \widehat{i} y \widehat{j} + (z^2 1) \widehat{k}$ find the value of $\iint_S \overrightarrow{F} \cdot \widehat{n} \, dS$, where S is the closed surface bounded by the planes z = 0, z = 1, and the cylinder $x^2 + y^2 = 4$.

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.