Roll No.						

Total No. of Pages : 03

Total No. of Questions : 09

B.Sc. (Mathematics) (Sem.-4) LINEAR ALGEBRA Subject Code : UC-BSHM-403-19 M.Code : 79912 Date of Examination : 22-12-22

Time: 3 Hrs.

Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION B & C. have FOUR questions each.
- 3. Attempt any FIVE questions from SECTION B & C carrying EIGHT marks each.
- 4. Select atleast TWO questions from SECTION B & C.

SECTION-A

- l. Write short notes on :
 - a) Let V be a vector space in \mathbb{R}^3 . Examine W = {(a, b, c) | c is an integer} is a subspace or not.
 - b) If S and T are any subsets of a vector space V (F). Prove that $S \subset T \Rightarrow L(S) \subset L(T)$.
 - c) Let V be a vector space over a field F. Then prove that every non zero singleton subset of V is L.I. over F.
 - d) Give examples of two different basis of V_3 (R).
 - e) Examine the mapping $T : \mathbb{R}^2 \to \mathbb{R}$ defined by T(x, y) = xy is linear transformation or not.
 - f) Find the rank of zero transformation.
 - g) Find a linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^4$ whose range is spanned by (1, 2, 0, -4) and (2, 0, -1, -3).
 - h) Show that there is no non-singular linear transformation from R^4 to R^3 .
 - i) If λ is an eigenvalue of the matrix A then prove that $\lambda \pm k$ is an eigenvalue of A $\pm k$ I.

j) Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be a L.T. s.t. T(x, y) = (2x + 5y, 6x + y). Compute minimal polynomial of T.

SECTION-B

- 2. a) Prove that the union of two subspaces is a subspace if and only if one of them is a subset of the other.
 - b) For what value of k, will the vector $\upsilon = (1, k, -4) \in \mathbb{R}_3$ is a linear combination of $\upsilon_1 = (1, -3, 2)$ and $\upsilon_2 = (2, -1, 1)$.
- 3. a) Let V and W be two vector spaces over the same field F and T : $V \rightarrow W$ be a linear transformation with kernel K. prove that
 - i) K is a subspace of V
 - ii) T (V) is a subspace of W.
 - b) Let V (F) be a vector and T, S be two linear transformations on V. Then show that if T and S are invertible, then TS is also invertible.
- 4. a) Let T be a linear operator on R³ defined by T (x, y, z) = (2x, 4x y, 2x + 3y z). Show that T is invertible and find T⁻¹.
 - b) For the linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^3$, defined by, T(x, y) = (x + y, x y, y), find a basis and dimension of (i) its range space (ii) its null space.
- 5. a) Let S and T are any subsets of V (F). Prove that $L(S \cup T) = L(S) + L(T)$.
 - b) Show that the set $B = \{1, x, x^2, x^3, ..., x^n\}$ of (m + 1) polynomials is a basis set for the vector space $P_m(R)$ of all polynomials of degree *m* over R (reals).

SECTION-C

- 6. a) Let V (F) and W (F) be two vector spaces and T : $V \rightarrow W$ is a linear transformation. Assume that V (F) is finite dimensional. Prove that V and range space of T have the same dimensions iff T is non-singular.
 - b) Let T be a linear operator on \mathbb{R}^3 defined by T (x, y) = (2y + z, x 4y, 3x)
 - i) Find the matrix of T relative to the basis $B = \{(1, 1, 1), (1, 1, 0), (1, 0, 0)\}$
 - ii) Verify that $[T; B] [\upsilon; B] = [T (\upsilon(; B] \forall \upsilon \in \mathbb{R}^3).$

- 7. a) Show that L.T., $T : \mathbb{R}^3 \to \mathbb{R}^3$ defined by T(x, y, z) = (x y, y z, z x) is neither one-one nor onto.
 - b) Find the matrix representation of linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^3$ defined by T(x, y) = (x + 4y, 2x + 3y, 3x 5y) relative to ordered basis $B_1 = \{(1, 1), (2, 3)\}$ for \mathbb{R}^2 and $B_2 = \{(1, 1, 1), (1, 1, 0), (1, 0, 0)\}$ for \mathbb{R}^3 .

8. Diagonalize the matrix
$$\begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$$
.

- 9. a) Find the characteristics roots of the matrix $A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$ and verify the Cayley-Hamilton theorem for this matrix. Find A^{-1} and also, express $A^5 - 4A^4 - 7A^3 + 11A^2 - A - 10I$ as a linear polynomial in A.
 - b) Express the quadratic from $2x^2 + 5y^2 6z^2 2xy yz + 8zx$ in matrix notation.

NOTE : Disclosure of Identity by writing Mobile No. or Marking of passing request on any paper of Answer Sheet will lead to UMC against the Student.