Roll No.	Total No. of Pages:03
Total No. of Questions:09	
B.Sc. Hons. (Mathematics)	(Sem.–4)
VECTOR CALCUL	US
Subject Code : UC-BSHM	-401-19
M.Code: 79910	
Date of Examination : 17	-12-22
Time:3 Hrs.	Max. Marks:60

INSTRUCTIONS TO CANDIDATES :

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks 1. each.
- 2. SECTION - B & C. have FOUR questions each.
- Attempt any FIVE questions from SECTION B & C carrying EIGHT marks each. 3.
- 4. Select atleast TWO questions from SECTION - B & C.

SECTION-A

- 1. Write short notes on :
 - a) $\overrightarrow{a}, \overrightarrow{b}$ and \overrightarrow{c} are vector functions of a scalar function t then what is the value of $\frac{d}{dt} [\overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c})].$
 - b) If $\stackrel{\wedge}{R}$ is a unit vector in the direction of $\stackrel{\rightarrow}{r}$, prove that $\stackrel{\wedge}{R} \times \frac{d \stackrel{\rightarrow}{R}}{dt} = \frac{\stackrel{\rightarrow}{r}}{r^2} \times \frac{d \stackrel{\rightarrow}{r}}{dt}$, where r = |r|.
 - c) What do you mean by directional derivative?
 - d) Show that a vector field given by $\stackrel{\rightarrow}{A} \times (x^2 + xy^2) \stackrel{\wedge}{i} + (y^2 + x^2y) \stackrel{\wedge}{j}$ is irrotational.
 - e) If $\overrightarrow{r} = x \overrightarrow{i} + y \overrightarrow{j} + z \overrightarrow{k}$, show that div $\overrightarrow{r} = 3$.

- f) If $u\vec{F} = \nabla v$, where u, v are scalar fields and \vec{F} is a vector field, show that \vec{F} .curl $\vec{F} = 0$.
- g) Find the angle between the tangents to the curve $\vec{r} = t^2 \hat{i} + 2t \hat{j} t^3 \hat{k}$ at the points $t = \pm 1$.
- h) State Gauss divergence theorem.
- i) If $\vec{F} = 3xy\hat{i} y^2\hat{j}$, evaluate $\int_C \vec{F} \cdot d\vec{r}$, where C is the arc of the parabola $y = 2x^2$ from (0, 0) to (1, 2).
- j) What do you mean by surface integral?

SECTION – B

- 2. Find the unit tangent vector at any point on the curve $x = t^2 + 2$, y = 4t 5, $z = 2t^2 6t$, where *t* is any variable. Also determine the unit tangent vector at the point t = 2.
- 3. The position vector of a moving particle at a time t is $\overrightarrow{R}(t) = t^2 \overrightarrow{i} t^3 \overrightarrow{j} + t^4 \overrightarrow{k}$. Find the tangential and normal components of its acceleration at time t = 1.
- 4. Prove that four vectors $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}, \overrightarrow{d}$ are coplanar if and only if $\overrightarrow{b}, \overrightarrow{c}, \overrightarrow{d} = \overrightarrow{c}, \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}, \overrightarrow{d}$ are coplanar if and only if
- 5. Given $\overrightarrow{a} = 2\overrightarrow{i} \overrightarrow{j} + 3\overrightarrow{k}$, $\overrightarrow{b} = 2\overrightarrow{i} + \overrightarrow{j} \overrightarrow{k}$, $\overrightarrow{c} = \overrightarrow{i} + 3\overrightarrow{j} \overrightarrow{k}$, find the reciprocal triads $\overrightarrow{a'}$, $\overrightarrow{b'}$, $\overrightarrow{c'}$ and verify that $[\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}][\overrightarrow{a'} \ \overrightarrow{b'} \ \overrightarrow{c'}] = 1$.

SECTION-C

6. Find the value of constants a, b and c so that the maximum value of the directional derivative of $\phi = axy^2 + byz + cz^2x^3$ at (1, 2, -1) has a magnitude 64 in the direction parallel to z-axis.

- 7. Evaluate $\int_C (yzdx + (zx+1)dy + xydz)$, where C is a straight line joining the points (1, 0, 0) to (2, 1, 4).
- 8. Verify Green's theorem in the plane for $\oint_C [(xy + y^2)dx + x^2dy]$, where C is the closed curve of the region bounded by y = x and $y = x^2$.
- 9. State and prove Stoke's theorem.

NOTE : Disclosure of Identity by writing Mobile No. or Marking of passing request on any paper of Answer Sheet will lead to UMC against the Student.