Total No. of Questions: 07

B.Sc. (CS) (Sem. – 4)

NUMBER THEORY

Subject Code: BCS-401

M Code: 72317

Date of Examination: 13-12-2022

Time: 3 Hrs.

INSTRUCTIONS TO CANDIDATES:

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains SIX questions carrying TEN marks each and students have to attempt any FOUR questions.

SECTION-A

- 1. Write briefly:
 - a) How many integers between 100 and 1000 are divisible by 7?
 - b) Prove that there are no pair of integers x, y satisfying x + y = 100 and (x, y) = 3.
 - c) Using Euclidean Algorithm, find L.C.M. of 306 and 657.
 - d) Prove that every integer of the form $8^n + 1$ is composite for $n \ge 1$.
 - e) Show that there are no integers x such that $x \equiv 29 \pmod{48}, x \equiv 11 \pmod{50}, x \equiv 72 \pmod{135}$
 - f) Find the remainder when 15 ! is divided by 17.
 - g) Find the value of $\phi(360)$.
 - h) Find the highest power of 9 dividing 365!.
 - i) Find the number of positive integers \leq 3600 that are prime to 3600.
 - j) Find the missing digit x of $51840 \cdot 273581 = 1418243 \times 040$, using working modulo 9 or 11.

Roll No.

Total No. of Pages: 02

Max. Marks: 60

SECTION-B

- 2. a) Find all solutions of 91x + 221y = 1053, if they exist.
 - b) Prove that every integer n>1 can be represented as a product of primefactors in only one way, apart from the order of factors.
- 3. a) Find values of x and y to satisfy 71x 50y = 1.
 - b) Find all integers a and b satisfying (a, b) = 10 and [a, b] = 100.
- 4. a) Solve the given linear congruence $13x \equiv 3 \pmod{47}$.
 - b) Find the remainder when 2^{50} is divided by 7.
- 5. a) Prove that for any positive integer n, $\sum_{d=1}^{n} \phi(d) \left[\frac{n}{d}\right] = \frac{n(n+1)}{2}$.
 - b) Let F and f are two arithmetic functions. For every integer n, if

$$F(n) = \sum_{\underline{a}} f(d) \operatorname{then} f(n) = \sum_{\underline{a}} \mu(d) F\left(\frac{n}{\underline{a}}\right).$$

6. a) Using Fermat's theorem, if p is an odd prime, then show that

 $1^p + 2^p + \dots + (p-1)^p \equiv 0 \pmod{p}.$

- b) Find the least non-negative residue of (583)³⁶¹(mod 91).
- 7. a) Solve $x \equiv 2 \pmod{3}$, $x \equiv 3 \pmod{5}$, $x \equiv 5 \pmod{2}$.
 - b) If p is a prime then show that

$$(p-1)! \equiv p-1 \pmod{1+2+3+\dots+(p-1)}.$$

NOTE : Disclosure of Identity by writing Mobile No. or Marking of passing request on any paper of Answer Sheet will lead to UMC against the Student.