Roll No.

Total No. of Questions : 09

B.Sc. (Hons.) Mathematics (Sem.–2) CALCULUS - II Subject Code : UC-BSHM-201-19 M.Code : 77765 Date of Examination : 20-12-22

Time: 3 Hrs.

INSTRUCTIONS TO CANDIDATES :

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION B & C. have FOUR questions each.
- 3. Attempt any FIVE questions from SECTION B & C carrying EIGHT marks each.
- 4. Select atleast TWO questions from SECTION B & C.

SECTION-A

- 1. a) Prove that the curve $y = e^x$ is concave upwards for all $x \in \Upsilon$.
 - b) Find the point of inflexion of the curve $y = x^4$.
 - c) Find the asymptotes parallel to the coordinate axes of the curve $x^2 + y^2 = 4x^2 + 9y^2$.
 - d) Find the envelope of the family of straight lines $y = mx + \frac{1}{m}$. where *m* is the parameter.
 - e) Examine the nature of origin on the curve $y^2 (a^2 + x^2) = x^2 (a^2 x^2)$.
 - f) If $I_n = \int (\log x)^n dx$, then slow that $I_n + I_{n-1} = x(\log x)^n$.
 - g) Test the convergence of the integral $\int_{1}^{\infty} \frac{\log x}{x^2} dx$.
 - h) Using fundamental theorem of calculus, find $c \in [0, 6]$ such that f(c) equals the average value of the function $f(x) = \frac{x}{2}$ over [0, 6].
 - i) Find the length of the arc of the parabola $y^2 4y + 2x = 0$ which lies in the first quadrant.
 - j) Give the formula for Simpson's $\frac{1}{3}$ rule.

Total No. of Pages : 02

Max. Marks: 60

SECTION-B

- 2. a) Find the intervals in which the curve $y = (\cos x + \sin x) e^x$ is concave upward or downward in $(0, 2\pi)$.
 - b) Determine *a* and *b* so that the curve $y = ax^3 + bx^2$ has a point of inflexion at (-1, 2).
- 3. Find the asymptotes of the curve $x^3 + 2x^2y xy^2 2y^3 + xy y^2 1 = 0$
- 4. Trace the curve $y = x^3 + 5x^2 + 3x 4$.
- 5. a) Prove that the curvature of a straight line is zero.
 - b) Find the evolute of the parabola $y^2 = 4ax$.

SECTION-C

- 6. Obtain a reduction formula for $\int x^n e^{-x} dx$. Hence evaluate $\int_0^\infty x^n e^{-x} dx$, where *n* is a positive integer.
- 7. Show that the integral $\int_0^\infty \sin(x^2) dx$ is convergent.
- 8. a) Find the area bounded by the lines y = x, x = -1 and x = 1.
 - b) Use the midpoint rule to estimate $\int_0^1 x^2 dx$ using four subintervals. Compare the result with the actual value of this integral.
- 9. Determine the surface area of the solid obtained by rotating $y = \sqrt{9 x^2}$; $-2 \le x \le 2$ about the *x*-axis.

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.